Multi-Tree Multicast Traffic Engineering for Software-Defined Networks

نویسندگان

  • Shan-Hsiang Shen
  • Liang-Hao Huang
  • Hsiang-Chun Hsu
  • De-Nian Yang
  • Wen-Tsuen Chen
چکیده

Although Software-Defined Networking (SDN) enables flexible network resource allocations for traffic engineering, current literature mostly focuses on unicast communications. Compared to traffic engineering for multiple unicast flows, multicast traffic engineering for multiple trees is very challenging not only because minimizing the bandwidth consumption of a single multicast tree by solving the Steiner tree problem is already NP-Hard, but the Steiner tree problem does not consider the link capacity constraint for multicast flows and node capacity constraint to store the forwarding entries in Group Table of OpenFlow. In this paper, therefore, we first study the hardness results of scalable multicast traffic engineering in SDN. We prove that scalable multicast traffic engineering with only the node capacity constraint is NP-Hard and not approximable within δ, which is the number of destinations in the largest multicast group. We then prove that scalable multicast traffic engineering with both the node and link capacity constraints is NP-Hard and not approximable within any ratio. To solve the problem, we design a δ-approximation algorithm, named Multi-Tree Routing and State Assignment Algorithm (MTRSA), for the first case and extend it to the general multicast traffic engineering problem. The simulation and implementation results demonstrate that the solutions obtained by the proposed algorithm outperform the shortest-path trees and Steiner trees. Most importantly, MTRSA is computation-efficient and can be deployed in SDN since it can generate the solution with numerous trees in a short time. Keywords—SDN, multicast, traffic engineering

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Multicast Tree Construction Algorithm for Multi-Radio Multi-Channel Wireless Mesh Networks

Many appealing multicast services such as on-demand TV, teleconference, online games and etc. can benefit from high available bandwidth in multi-radio multi-channel wireless mesh networks. When multiple simultaneous transmissions use a similar channel to transmit data packets, network performance degrades to a large extant. Designing a good multicast tree to route data packets could enhance the...

متن کامل

Interference-Aware and Cluster Based Multicast Routing in Multi-Radio Multi-Channel Wireless Mesh Networks

Multicast routing is one of the most important services in Multi Radio Multi Channel (MRMC) Wireless Mesh Networks (WMN). Multicast routing performance in WMNs could be improved by choosing the best routes and the routes that have minimum interference to reach multicast receivers. In this paper we want to address the multicast routing problem for a given channel assignment in WMNs. The channels...

متن کامل

Scalable Steiner Tree for Multicast Communications in Software-Defined Networking

Software-Defined Networking (SDN) enables flexible network resource allocations for traffic engineering, but at the same time the scalability problem becomes more serious since traffic is more difficult to be aggregated. Those crucial issues in SDN have been studied for unicast but have not been explored for multicast traffic, and addressing those issues for multicast is more challenging since ...

متن کامل

Online Multicast Traffic Engineering for Software-Defined Networks

Previous research on SDN traffic engineering mostly focuses on static traffic, whereas dynamic traffic, though more practical, has drawn much less attention. Especially, online SDN multicast that supports IETF dynamic group membership (i.e., any user can join or leave at any time) has not been explored. Different from traditional shortest-path trees (SPT) and graph theoretical Steiner trees (ST...

متن کامل

Delay Bounded Multi-Source Multicast in Software-Defined Networking

Software-Defined Networking (SDN) is the next generation network architecture with exciting application prospects. The control function in SDN is decoupled from the data forwarding plane, hence it provides a new centralized architecture with flexible network resource management. Although SDN is attracting much attention from both industry and research, its advantage over the traditional network...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1507.08728  شماره 

صفحات  -

تاریخ انتشار 2015